Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
ACS Cent Sci ; 9(2): 252-265, 2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2286109

ABSTRACT

The spike protein of SARS-CoV-2 has been a promising target for developing vaccines and therapeutics due to its crucial role in the viral entry process. Previously reported cryogenic electron microscopy (cryo-EM) structures have revealed that free fatty acids (FFA) bind with SARS-CoV-2 spike protein, stabilizing its closed conformation and reducing its interaction with the host cell target in vitro. Inspired by these, we utilized a structure-based virtual screening approach against the conserved FFA-binding pocket to identify small molecule modulators of SARS-CoV-2 spike protein, which helped us identify six hits with micromolar binding affinities. Further evaluation of their commercially available and synthesized analogs enabled us to discover a series of compounds with better binding affinities and solubilities. Notably, our identified compounds exhibited similar binding affinities against the spike proteins of the prototypic SARS-CoV-2 and a currently circulating Omicron BA.4 variant. Furthermore, the cryo-EM structure of the compound SPC-14 bound spike revealed that SPC-14 could shift the conformational equilibrium of the spike protein toward the closed conformation, which is human ACE2 (hACE2) inaccessible. Our identified small molecule modulators targeting the conserved FFA-binding pocket could serve as the starting point for the future development of broad-spectrum COVID-19 intervention treatments.

2.
ACS central science ; 2023.
Article in English | Europe PMC | ID: covidwho-2246205

ABSTRACT

The spike protein of SARS-CoV-2 has been a promising target for developing vaccines and therapeutics due to its crucial role in the viral entry process. Previously reported cryogenic electron microscopy (cryo-EM) structures have revealed that free fatty acids (FFA) bind with SARS-CoV-2 spike protein, stabilizing its closed conformation and reducing its interaction with the host cell target in vitro. Inspired by these, we utilized a structure-based virtual screening approach against the conserved FFA-binding pocket to identify small molecule modulators of SARS-CoV-2 spike protein, which helped us identify six hits with micromolar binding affinities. Further evaluation of their commercially available and synthesized analogs enabled us to discover a series of compounds with better binding affinities and solubilities. Notably, our identified compounds exhibited similar binding affinities against the spike proteins of the prototypic SARS-CoV-2 and a currently circulating Omicron BA.4 variant. Furthermore, the cryo-EM structure of the compound SPC-14 bound spike revealed that SPC-14 could shift the conformational equilibrium of the spike protein toward the closed conformation, which is human ACE2 (hACE2) inaccessible. Our identified small molecule modulators targeting the conserved FFA-binding pocket could serve as the starting point for the future development of broad-spectrum COVID-19 intervention treatments. Computationally identified compound SPC-14 stabilizes the ACE2-inaccessible closed conformation of the SARS-CoV-2 spike protein by targeting a less mutation-prone free fatty acids-binding pocket.

3.
Cell Discov ; 9(1): 3, 2023 Jan 07.
Article in English | MEDLINE | ID: covidwho-2185789

ABSTRACT

SARS-CoV-2 Omicron subvariants have demonstrated extensive evasion from monoclonal antibodies (mAbs) developed for clinical use, which raises an urgent need to develop new broad-spectrum mAbs. Here, we report the isolation and analysis of two anti-RBD neutralizing antibodies BA7208 and BA7125 from mice engineered to produce human antibodies. While BA7125 showed broadly neutralizing activity against all variants except the Omicron sublineages, BA7208 was potently neutralizing against all tested SARS-CoV-2 variants (including Omicron BA.1-BA.5) except Mu. By combining BA7208 and BA7125 through the knobs-into-holes technology, we generated a biparatopic antibody BA7208/7125 that was able to neutralize all tested circulating SARS-CoV-2 variants. Cryo-electron microscopy structure of these broad-spectrum antibodies in complex with trimeric Delta and Omicron spike indicated that the contact residues are highly conserved and had minimal interactions with mutational residues in RBD of current variants. In addition, we showed that administration of BA7208/7125 via the intraperitoneal, intranasal, or aerosol inhalation route showed potent therapeutic efficacy against Omicron BA.1 and BA.2 in hACE2-transgenic and wild-type mice and, separately, effective prophylaxis. BA7208/7125 thus has the potential to be an effective candidate as an intervention against COVID-19.

4.
Remote Sensing ; 14(16):3927, 2022.
Article in English | ProQuest Central | ID: covidwho-2024036

ABSTRACT

Airport emissions have received increased attention because of their impact on atmospheric chemical processes, the microphysical properties of aerosols, and human health. At present, the assessment methods for airport pollution emission mainly involve the use of the aircraft emission database established by the International Civil Aviation Organization, but the emission behavior of an engine installed on an aircraft may differ from that of an engine operated in a testbed. In this study, we describe the development of a long-path differential optical absorption spectroscopy (LP-DOAS) instrument for measuring aircraft emissions at an airport. From 15 October to 23 October 2019, a measurement campaign using the LP-DOAS instrument was conducted at Hefei Xinqiao International Airport to investigate the regional concentrations of various trace gases in the airport’s northern area and the variation characteristics of the gas concentrations during an aircraft’s taxiing and take-off phases. The measured light path of the LP-DOAS passed through the aircraft taxiway and the take-off runway concurrently. The aircraft’s take-off produced the maximum peak in NO2 average concentrations of approximately 25 ppbV and SO2 average concentrations of approximately 8 ppbV in measured area. Owing to the airport’s open space, the pollution concentrations decreased rapidly, the overall levels of NO2 and SO2 concentrations in the airport area were very low, and the maximum hourly average NO2 and SO2 concentrations during the observation period were better than the Class 1 ambient air quality standards in China. Additionally, we discovered that the NO2 and SO2 emissions from the Boeing 737–800 aircraft monitored in this experiment were weakly and positively related to the age of the aircraft. This measurement established the security, feasibility, fast and non-contact of the developed LP-DOAS instrument for monitoring airport regional concentrations as well as NO2 and SO2 aircraft emissions during routine airport operations without interfering with the normal operation of the airport.

SELECTION OF CITATIONS
SEARCH DETAIL